

Flexible Client-server Architecture Designed for Testing

Optimized Link State Routing (OLSRv2) for Component-
based Routing (CBR)

by Justin James

ARL-TN-0375 November 2009

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TN-0375 November 2009

Flexible Client-server Architecture Designed for Testing
Optimized Link State Routing (OLSRv2) for Component-

based Routing (CBR)

Justin James

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June to August 2009
4. TITLE AND SUBTITLE

Flexible Client-server Architecture Designed for Testing Optimized Link State
Routing (OLSRv2) for Component-based Routing (CBR)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Justin James
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIN-T
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TN-0375

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report discusses a client-server architecture designed for testing the Optimized Link State Routing (OLSRv2) protocol for
Component-based Routing (CBR) implementation. The client-server application was devised to combine maximum
performance flexibility with minimal structural ambiguity. The proposed client-server architecture is tremendously adaptable
and permits the user to specify any number of parameters related to information exchange. This architecture is necessary
because conventional studies have shown that the performance of a routing protocol in a Mobile Ad-hoc Network is stoutly
reliant on the network environment and/or desired result(s). Consequently, to accomplish the most favorable routing
performance in a dynamic network atmosphere, the routing procedure itself should be dynamic. One proposed resolution is
CBR. In CBR, researchers use a compilation of fundamental component modules from existing routing protocols merged to
construct a distinctive, best possible, on-demand protocol for any set of network circumstances. Consequently, this obliges the
implementation of flexible client-server architecture. Since the network constantly changes, the client-server needs to
constantly change. A flexible client-server architecture ensures maximum compatibility between client-server information
exchanges. The client-server application produced will be used to test the performance of the component modules and overall
routing system of OLSRv2. The results of the performance test will be used to implement CBR more effectively.

15. SUBJECT TERMS

Component-based routing, client, server, OLSR

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

16

19a. NAME OF RESPONSIBLE PERSON

Rommie Hardy
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(301) 394-1189

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

1. Introduction 1

2. Background 1

3. Experiment 3

4. Results 5

5. Conclusions 6

6. References 7

List of Symbols, Abbreviations, and Acronyms 8

Distribution List 9

iv

INTENTIONALLY LEFT BLANK.

1

1. Introduction

Traditional research has proven that the performance of routing protocols in a Mobile Ad-hoc
Network (MANET) is strongly dependent on the desired outcome(s) and on the operating
network environment. In fact, for any given routing protocol, the performance is heavily
dependent upon the situation. Consequently, the exact same protocol that performs optimally in
a high mobility scenario might operate below satisfactory standards in a low mobility situation or
vice-versa. In a similar sense, all routing protocols are limited to operating within the protocol’s
tolerable conditions. Therefore, to attain optimal routing performance in a dynamic network
environment, the routing protocol itself should be dynamic in order to adapt to perform optimally
for the network metrics and requirements at any particular instance of time. However, for this
approach to work as desired, details must be known about the performance of each component of
each routing protocol under a variety of likely network conditions and scenarios.

2. Background

One solution to this new area of research has become known as Component-based Routing
(CBR). However, CBR is not a newly design single standalone protocol; but instead, a
collection of basic component modules from existing routing protocols fused together to produce
a unique optimal on-demand protocol for any network or scenario. This technique is achievable
because nearly all routing protocols perform the same core and/or auxiliary operations. Core
functions of a routing protocol may include route discovery, route selection, route formation,
data forwarding, route maintenance, and routing metrics. Auxiliary functions of a routing
protocol may include neighbor discovery, neighbor maintenance, hierarchical structure,
multicast, and security. Consequently, a mesh of modules of components from different routing
protocols can be assembled to produce a new unique fully functional routing protocol. To
illustrate this point of interchangeability, consider the core routing protocol function of data
forwarding, which exists for all routing protocols. Some data forwarding modules will maximize
reliability, while other modules will ensure energy efficiency. The goal of CBR is to consider
the user requirements and network environment, and select the proper modules to compose the
most suitable on-demand routing protocol. However, in order to know which modules should be
used, an advanced understanding of the impacts, advantages, and disadvantages of each module
are necessary.

Research of this nature contributes not only to the development of CBR, but also to the general
sphere-space of MANET and routing knowledge. Such a detailed study of these routing
protocols may yield phenomena not yet discovered or explored by previous researchers.

2

Through analyzing the performance of each module instead of the performance of overall the
protocol, a more in-depth and information-rich set of data should be acquired, in comparison to
research results obtained in similar studies using the more traditional approaches. The full
benefits of CBR research are still undefined; however, since CBR employs such a novel research
approach, researchers are confident that this process will produce some interesting and unique
results.

Recently, CBR techniques were used to evaluate the performance of the Dynamic Source
Routing (DSR) protocol. CBR simulation analysis of DSR was performed using an “Analytical
Software Tool” designed by collaborating researchers at the University of Maryland, College
Park. The simulation was considered a great success in analyzing the performance of the DSR
component modules and overall routing system. Each core and auxiliary routing component was
analyzed and results were acquired for each. However, emulation results have not yet been
obtained to validate the simulation findings. In the near future, emulation results will be
obtained using the Mobile Ad-hoc Network Emulator (MANE). If the emulation results match
the simulation results, the simulation results will be considered valid, which would in turn
validate the software analytical tool. Validating the software analytical tool provides several
advantages. These benefits include providing a much less cumbersome testing platform than
MANE for evaluating future routing component modules and systems.

Currently, research efforts are focused on evaluating the performance of the Optimized Link
State Routing (OLSRv2) protocol and its component modules. However, this task is not trivial
with many obstacles and challenges that must be overcome. Therefore, this project employs a
team of collaborators from several academic and industrial institutions with each providing
specific contributions necessary to achieve the desired goals and performance of CBR.

In order to test the performance of the routing components for OLSR, the routing protocol itself
had to be deconstructed into its core and auxiliary functions and components. However, to do
this, each class of components that form a MANET routing protocol had to be identified and
appropriately defined. Despite the fact that not every routing protocol contains components from
each class, every protocol is composed of elements identified during this process. The
dependencies of classes of components were also investigated and considered. Once the classes
of routing components were identified and defined, the performance of each the defined
component modules of a particular protocol could be investigated.

The data acquired includes component module performance and overall routing performance.
Component performance focuses primarily on the performance of a component as a standalone
module. The overall routing performance focuses on the performance of a group of cooperating
components which make up a routing protocol. The evaluation of each component has two parts:
(a) identifying relevant variables and (b) investigating the effect of each of these relevant
parameters.

3

Through a careful comparison of the component performance and overall routing system
performance, inferences can be made about the relationship of each component to the
performance of the overall system. Using this knowledge, designers can prioritize the overall
systematic weight of each component. While some components may affect the overall
performance greatly, others might not have such an influential effect on the overall routing
system.

Once the performance evaluation has been performed, the system will be deployed. However,
several issues arise from the deployment of CBR in itself. One potential problem is component
module incompatibilities within a network that would prevent or disrupt data flow. Another
issue is security. Security add-ons may affect the performance drastically depending on the
scheme employed due to increase overhead and resource allocation. Other deployment questions
including component module update intervals and network convergence time also exists.

3. Experiment

OLSRv2 operates as a table driven, proactive protocol developed for MANETs. In OLSRv2,
each router selects a set of its neighbors as “Multi-point Relays” (MPRs). The usage of MPRs
reduces the number of flooded messages, thus reducing network traffic (overhead) and
increasing network performance. In OLSRv2, a MPR of a router must be selected from a node’s
willing one-hop symmetric neighbors. OLSRv2 uses two types of messages, Topology Control
(TC) and Hello. These messages are disseminated through the network, and nodes use the
information within these messages to maintain neighbor information and network topology.
Messages generated in OLSRv2 employ User Datagram Protocol (UDP) at the Transport layer of
the Open System Interconnection (OSI) model. In a MANET, each node behaves as a peer-to-
peer (P2P) router that operates as both a client and server. But unlike in a pure P2P network, in
OLSRv2, only nodes selected as MPRs have the authority to forward data.

To evaluate the OLSRv2 protocol for CBR, a client-server architecture was designed that will be
used to test the performance of the component modules and overall routing system. The
contributions made by myself with the assistance of others included researching, designing, and
debugging this client-server architecture, which will be implemented to investigate the
performance of OLSRv2. The client-server program is a distributed application architecture that
divides the workload between service requesters (clients) and service providers (servers).
Servers are usually high performance hosts that share resources with clients. Servers should
always be available, waiting in a listen state for any service request from a client. A client is not
required to share its resources with the server; however, the responsibility is on the client to
initiate communication.

4

The client-server architecture developed assumes that each server can meet the needs of one-to-
many clients. Even though OLSRv2 uses UDP, the architecture that was designed is also
capable of operating in Transport Control Protocol (TCP) mode. The client-server application
was designed for maximum performance flexibility and minimal structural ambiguity. As a
consequence, this architecture followed a three class Unified Modeling Language (UML) model.
The largest of these three classes was an abstract class called node. The node class had two
generalized sub-classes, client and server. The node class contained attributes and behaviors
common to both the client and server classes. Through the generalization transactions, the client
and server classes inherit all operations and attributes of the node class. For this reason, node is
purely an abstract class. The client and server classes were connected through an association
transaction. Finally, operations and attributes were assigned to the appropriate classes.
However, the implementations of the operations of the classes were not defined immediately.
Before coding the implementations of the UML model, a C++ application was created.

This C++ client-server application was used as working skeleton of the UML model, which
needed to be implemented. When researching how to create the client-server application, the
fact that the usage of programming sockets would be necessary was immediately evident.
Socket functions allow application programmers to access and control the transport OSI layer.
Through the usage of socket functions, a programmer assigns ports, IP addresses, address
families, and much more. Once a socket has been created, network communication is possible.

Several functions are necessary in the creation, management, and destruction of a network
socket. Even though both clients and servers use sockets, they do not use them the same way. A
server uses the following operation: WSAStartup(), socket(), bind(), listen(), accept(), recv() /
recvfrom(), send() / sendto(), close(), and WSACleanup(). However, a client uses
WSAStartup(), socket(), connect(), send() / sento(), recv() / recvfrom(), close(), and
WSACleanup(). Although many functions are common, others are not. Only servers need
bind(), accept(), and listen(). Likewise, only clients need connect(). Since clients and servers
perform different roles, they rely on different resources to operate. The common functions were
placed in the abstract node class of the UML model. However, the other functions unique to
either a client or server were placed in the appropriate class in the UML representation.

In order for the client-server application to work, the server program had to be run first. This
makes perfect sense, because a client cannot request a service from a service provider if the
provider does not exist. When the server program runs, its behavior depends on the operating
parameters. In TCP, the program runs and waits in the accept() state. This is due to the fact that
TCP is a connection-oriented service; therefore, the connection must be established and
approved prior to data transfer with a client. However, in UDP, the server runs and waits in the
recvfrom() state. Since UDP is a connectionless service, the server is waiting and ready to
receive messages from potential clients. At this point, the server is idle. Clients are run to
request service from the server. In TCP, the server accepts the connection, and then receives the
service request. But, in UDP, the server simply receives the service request from the client.

5

Once the server has received a request, the server performs some desired task(s) and sends
information back to the client. The client then receives the response message from the server
with the information requested by the client. If the client has more requests, then it sends them
to the server. Otherwise, the client application closes. However, after handling the requests of
all the requesting clients, the server goes back into an idle accept or receive-from state depending
on the transport protocol. The server program does not close unless initiated by the user;
however, in the near future, a wait-time timeout will be implemented to conserve resources.

4. Results

Client-server applications were constructed using three different programming Integrated
Development Environments (IDEs), which included Microsoft Visual Studio 2008, KDevelop,
and IBM/Telelogic Rational Rhapsody. Client-server applications were developed for both
Windows and Linux. Initially, KDevelop and Microsoft Visual Studio 2008 were used to create
the application using a conventional C++ programming approach. After the client-server
application had been compiled and debugged using these IDEs, the code was implemented in
IBM Rational Rhapsody employing UML. The generated C++ code from KDevelop and Visual
Studio was used to create an object-oriented model diagram (OOMD). To bridge to gap between
C++ programming and UML modeling, researchers participated in a tutorial based on
Telelogic’s Rhapsody UML Tutorial (version 2.1). The fundamentals acquired during the UML
tutorials were used to construct the OOMD. Using these techniques, flexible client-server
architecture was successfully constructed for testing OLSRv2 for CBR.

The client-server architecture designed is tremendously adaptable and permits the user(s) to
specify any number of parameters related to information exchange. A flexible client-server
architecture is essential, because conventional studies have shown that the performance of a
routing protocol in a MANET is firmly dependent on the network environment. Therefore, to
accomplish the best performance in a dynamic network atmosphere, the routing procedure itself
should be dynamic. Consequently, this obliges the implementation of a flexible client-server
architecture. Since the network constantly changes, the client-server needs constantly change. A
flexible client-server architecture ensures maximum compatible between client-server
information exchanges.

6

5. Conclusions

The client-server application produced will be used to test the performance of the component
modules and overall routing system of OLSRv2. The results of the performance test will be used
to implement CBR more effectively. With an enhanced knowledge of OLSRv2 and its modules
performance, advantages, and disadvantages in particular scenarios and operating conditions, the
decision making process of which class component modules to use in CBR can be improved.
Improvements in class component module selection should lead to improved routing efficiency
for dynamic networks. With newly acquired data, researchers might be able to exploit properties
that were previously uninvestigated. At worst, this research will only widen the area of related
research knowledge, questions, phenomena, and interests.

7

6. References

1. Stallings, W. Wireless Communications and Networks; Prentice Hall, November 2004.

2. Reese, G. Distributed Application Architecture; Sun Microsystems, 127–145, November
2000.

3. Stevens, W.; Fenner, B.; Rudoff, A. Unix Network Programming; The Sockets Networking
API, 3, Addison Wesley, 2003.

4. Schildt, H. C++ The Complete Reference Third Edition; Osborne McGraw Hill, August
1998.

5. Hunt, J. The Unified Process for Practitioners: Object-oriented Design, UML, and Java;
Springer, 2000.

6. Johnson, D.; Maltz, D.; Broch, J. The Dynamic Source Routing Protocol for Mobile Ad-hoc
Networks; IETF Internet Draft, April 2003.

7. Jacquent, P.; et al. Optimized Link State Routing Protocol; IETF Internet Draft, November
2000.

8. Scott, L. Personal communication. ARL-CSID, Adelphi, MD, June 2009.

9. Bohacek, S. Personal communication. ARL-CSID, Adelphi, MD, June 2009.

8

List of Symbols, Abbreviations, and Acronyms

CBR Component-Based Routing

DSR Dynamic Source Routing

IDE Integrated Development Environment

MANE Mobile Ad-hoc Network Emulator

MANET Mobile Ad-hoc Network

MPRs Multi-point Relays

OLSRv2 Optimized Link State Routing

OOMD Object-oriented Model Diagram

OSI Open System Interconnection

P2P Peer-to-Peer

TC Topology Control

TCP Transport Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

9

NO. OF
COPIES ORGANIZATION

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 DARPA
 ATTN IXO S WELBY
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

 1 CD OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD A RIVERA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL
 35898-5000

 1 US ARMY RSRCH LAB
 ATTN RDRL CIM G T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND MD
 21005-5066

 3 US ARMY RSRCH LAB
 ATTN IMNE ALC HRR
 MAIL & RECORDS MGMT
 ATTN RDRL CIM L TECHL LIB
 ATTN RDRL CIM P TECHL PUB
 ADELPHI MD 20783-1197

 3 PRAIRIE VIEW A&M UNIVERSITY
 ATTN DEPT. OF ELECTRICAL AND
 COMPUTER ENGINEERING
 D VAMAN
 J ATTIA
 J JAMES
 PO BOX 519, MAIL STOP 2520
 PRAIRIE VIEW TX 77446-0519

NO. OF
COPIES ORGANIZATION

 4 US ARMY RESEARCH LAB
 ATTN RDRL CIN T
 B RIVERA
 L SCOTT
 R HARDY
 ATTN RDRL DO
 V EMERY
 ADELPHI MD 20783-1197

 1 US ARMY RESEARCH OFFICE
 ATTN RDRL ROI N
 R ULMAN
 BLDG 4300
 RESEARCH TRIANGLE PARK
 DURHAM NC 27703

TOTAL: 17 (1 ELEC, 1 CD, 15 HCS)

10

INTENTIONALLY LEFT BLANK.

